Skip to main content


There are two main kinds of offline functionality: predictive caching and offline regions. Predictive caching is fully automatic and based on the driver’s behavior. It allows offline navigation around the user’s current location, the destination, and the route itself. Offline regions need to be created and loaded ahead of time, enabling routing functionality in non-connected environments.

Predictive caching

To use predictive caching, you will need to initialize a PredictiveCacheController and, optionally, configure PredictiveCacheMapsOptions and PredictiveCacheNavigationOptions. Once it's configured, the Navigation SDK will automatically create caches and make them available to the user.

To start caching map data, call createStyleMapControllers with a MapboxMap instance and, optionally, pass a list of style URI to cache. Styles must be hosted on Mapbox, and URI must start with “mapbox://” (for example, “mapbox://mapbox.mapbox-terrain-v2”). If you do not pass any styles to createStyleMapControllers, current map's style will be cached.

val predictiveCacheOptions = PredictiveCacheOptions.Builder()
val predictiveCacheController = PredictiveCacheController(predictiveCacheOptions)

// cache only passed styles for the mapboxMap instance
val stylesToCache: MutableList<String> = ArrayList()
val cacheCurrentStyle = false
predictiveCacheController.createStyleMapControllers(mapboxMap, cacheCurrentStyle, stylesToCache)

// cache current style for the anotherMapboxMap instance


The controller and its MapboxNavigation instance have a different lifecycle than the MapboxMap instance, so make sure to call removeMapControllers whenever the MapView is destroyed to avoid leaking references or downloading unnecessary resources.


When the navigation session is finished and predictive caching is no longer needed, call onDestroy to remove all map and navigation references.

override fun onDestroy() {

Configure predictive caching

When predictive caching is enabled, the Navigation SDK will create a cache of data within three configurable boundaries from PredictiveCacheLocationOptions (passed via PredictiveCacheNavigationOptions):

  1. Radius around the user's location. Defaults to 20,000 meters. Use currentLocationRadiusInMeters to configure this value.
  2. Buffer around the route. Defaults to 5,000 meters. Use routeBufferRadiusInMeters to configure this value.
  3. Radius around the destination. Defaults to 50,000 meters. Use destinationLocationRadiusInMeters to configure this value.

To configure predictive caching, pass values, in meters, to any of the PredictiveCacheLocationOptions.

val predictiveCacheLocationOptions = PredictiveCacheLocationOptions.Builder()

val predictiveCacheNavigationOptions = PredictiveCacheNavigationOptions.Builder()

val predictiveCacheOptions = PredictiveCacheOptions.Builder()

val predictiveCacheController = PredictiveCacheController(predictiveCacheOptions)

TileStore handles offline regions data for both navigation and maps. By default, there is no limit to the size of a tile store. A quota can be configured with the TileStoreOptions.DISK_QUOTA option.

TileStore will refuse to store new data on disk if it would cause the quota to be exceeded. To make room for new content, tiles packs with the nearest expiration dates that aren't shared by another tile region will be removed before the quota is reached. By default, the eviction threshold is 50 MB or 10% of the TileStoreOptions.DISK_QUOTA (whichever is smaller). If your disk quota is 100 MB then eviction threshold will be 10 MB (it will try to keep TileStore size < 90 MB). And if the disk quota is 10 GB then default eviction threshold is 50 MB.

For instance, if you set TileStoreOptions.DISK_QUOTA to 600 MB then nothing will be removed until the tile store size reaches 550 MB. After that, tile store will start evicting tile packs with the nearest expiration date which are not part of any region to try to keep the size under 550 MB. In case all tile packs belong to some region and nothing can be evicted, tile store may keep growing and use the entire quota of 600 MB. After that no new tile packs can be added to the tile store and some regions would need to be removed or TileStoreOptions.DISK_QUOTA would need to be increased.

val tileStore = TileStore.create()
tileStore.setOption(TileStoreOptions.DISK_QUOTA, Value(600 * 1024 * 1024))

Estimate predictive caching data use

Data usage depends on the configured radius and on map style. For the Mapbox Streets style, cache size is:

  • Berlin, 15km radius: 136 MB maps, 42 MB navigation
  • Chicago, 15km radius: 74 MB maps, 43 MB navigation
  • London, 15km radius: 145 MB maps, 90 MB navigation
  • Atlanta, 100 miles radius: 659 MB maps, 156 MB navigation

Offline regions

TileStore allows users to create and download offline regions ahead of time, enabling routing functionality in non-connected environments. In areas with no cellular connectivity, or on a device with no SIM card, your users can use turn-by-turn navigation and request new routes. If they go off-route, the system can reroute and keep them headed to their destination without requiring network connectivity. TileStore copies the routing data from the server onto the user’s device, so there’s no need to make HTTP API calls for routing information.

TileStore and the Maps SDK
TileStore handles offline regions data for both navigation data for generating routes and map tiles for displaying a map in your application. Find more details on how to use TileStore for map data in the Maps SDK documentation.

Initialize TileStore instance

To initialize a TileStore instance, provide a path to a cache directory where tiles will be stored.

val tileStore = TileStore.create("path/to/cache/directory/")

Pass TileStore instance to maps and navigation

After the TileStore instance is initialized, pass it to both MapboxNavigation and MapView via the corresponding options.

For both offline and predictive-caching use cases, you must pass the same TileStore instance to the Maps SDK's ResourceOptions and the Navigation SDK's RoutingTilesOptions. This will guarantee the same tile regions will be used for both maps-related and navigation-related data.

Pass the TileStore instance to RoutingTilesOptions options and pass those options to NavigationOptions to be applied to the MapboxNavigation object:

val routingTilesOptions= RoutingTilesOptions.Builder()

val navOptions = NavigationOptions.Builder(context)

val mapboxNavigation = MapboxNavigationProvider.create(navOptions)

Pass the TileStore instance to MapboxMapsOptions options to be applied to the MapView object:

MapboxMapsOptions.tileStore = tileStore

Download a tile region

To load a new tile region or update an existing one, create an asynchronous tile region download by calling the tile store's loadTileRegion method and passing in the TileRegionLoadOptions.

To create a new tile region, start by defining TileRegionLoadOptions. You must provide at least two pieces of information to TileRegionLoadOptions:

  • geometry: GeoJson object describing some area (for example Polygon or MultiPolygon).
  • descriptors: tileset descriptor is a bundle that encapsulates tilesets creation for the tile store implementation. Maps tileset descriptor contains metadata about the tilesets, zoom ranges, and pixel ratio that cached tile packs should include. Navigation tileset descriptor contains version of the navigation tiles that cached tile packs should include.

If one or both pieces of information are missing, the load request will fail with RegionNotFound error.

To begin loading the new tile region, pass the options to loadTileRegion. Each tile region requires a unique tile region id. This can be any alphanumeric string. To create a new tile region, provide a new tile region id.

To update an existing tile region, use the tile region id of the existing region. When you call loadTileRegion, expired resources will be updated and any missing resources will be loaded to the existing offline region. When updating a tile region, you do not have to provide TileRegionLoadOptions, but you can if you need to alter the geometry or descriptors. A failed load request can be reattempted with another loadTileRegion() call.

If there is already a pending loading operation for the tile region with the given id the pending loading operation will fail with an error of Canceled type.

val offlineManager = OfflineManager()

val mapsTilesetDescriptor = offlineManager.createTilesetDescriptor(

val navTilesetDescriptor = mapboxNavigation.tilesetDescriptorFactory.getLatest()

val tileRegionLoadOptions = TileRegionLoadOptions.Builder()
.descriptors(listOf(mapsTilesetDescriptor, navTilesetDescriptor))

val tileRegionCancelable = tileStore.loadTileRegion(
{ progress ->
// Handle the download progress
{ expected ->
// Handle the download result

List tile regions

Call TileStore#getAllTileRegions to get a list of available tile regions. This will return either an object (Expected) that includes a list of available tile regions or an error.

The callbacks will be executed on a TileStore-controlled worker thread. It is the responsibility of the developer to dispatch them to a controlled thread.
tileStore.getAllTileRegions { expected ->
// Handle regions

Delete tile regions

You can delete a tile region with TileStore#removeTileRegion.

This may not delete the downloaded tile packs immediately. Instead, it will mark the tileset as not being a part of an offline tile region, and the tileset will be removed from the disk cache during its normal cleanup process.

Observe tile regions state

You can add TileStoreObserver to be notified when the state of any tile region changes.

val tileStoreObserver = object : TileStoreObserver() {
override fun onRegionLoadProgress(id: String, progress: TileRegionLoadProgress) {
// Called whenever the load progress of a TileRegion changes.

override fun onRegionLoadFinished(id: String, region: Expected<TileRegionError, TileRegion>) {
// Called once a TileRegion load completes successfully, or is aborted due to cancellation or errors.

override fun onRegionRemoved(id: String) {
// Called when a TileRegion was removed

override fun onRegionGeometryChanged(id: String, geometry: Geometry) {
// Called when the geometry of a TileRegion was modified.

override fun onRegionMetadataChanged(id: String, value: Value) {
// Called when the user-provided metadata associated with a TileRegion was changed.

// remove observer when you don't need it
Was this page helpful?